Wnt1 positively regulates CD36 expression via TCF4 and PPAR-γ in macrophages.
نویسندگان
چکیده
BACKGROUND Scavenger receptors including CD36 control the phagocytosis of oxidized low-density lipoprotein and play an important role in macrophage physiology, but the underlying molecular mechanism by which CD36 is regulated in macrophages or during macrophage differentiation from monocytes remains to be determined. METHODS Here, we investigated the relationship between Wnt1 and CD36 during macrophage differentiation. CD36 was suppressed following knockdown of Wnt1 by siRNA, while it was increased by ectopic overexpression of Wnt1 in macrophages. Using a β-catenin inhibitor, peroxisome proliferator-activated receptor gamma (PPAR-γ) siRNA, and transcription factor 4 (TCF4) siRNA, we demonstrated that Wnt1 regulates the expression of CD36 through TCF4 and PPAR-γ. Co-immunoprecipitation, chromatin immunoprecipitation, and immunofluorescence experiments showed that β-catenin interacted with PPAR-γ and that PPAR-γ and TCF4 colocalized in the nucleus. Furthermore, Pax3 regulated Wnt1 via binding to the first binding site in the Wnt1 promoter. RESULTS Our study demonstrated that during macrophage differentiation from monocytes, Wnt1 promotes CD36 expression via activation of PPAR-γ and TCF4. CONCLUSIONS Our findings suggest that Wnt1 plays an important role in macrophage physiology via activation of the canonical Wnt pathway.
منابع مشابه
Compare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma
Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...
متن کاملCompare the effect of eicosapentaenoic acid and oxidized low-density lipoprotein on the expression of CD36 and peroxisome proliferator-activated receptor gamma.
BACKGROUND There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages; therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...
متن کاملPEGylated Curcumin Derivative Attenuates Hepatic Steatosis via CREB/PPAR-γ/CD36 Pathway
Curcumin has the potential to cure dyslipidemia and nonalcoholic fatty liver disease (NAFLD). However, its therapeutic effects are curbed by poor bioavailability. Our previous work has shown that modification of curcumin with polyethylene glycol (PEG) improves blood concentration and tissue distribution. This study sought to investigate the role of a novel PEGylated curcumin derivative (Curc-mP...
متن کاملA PPARg-LXR-ABCA1 Pathway in Macrophages Is Involved in Cholesterol Efflux and Atherogenesis
phage gene expression. Although the mechanisms by which oxidized LDL (oxLDL) regulates cellular gene expression are still poorly understood, recent work suggests that transcriptional pathways involving nuclear receptors mediate many biological effects of oxidized by providing the cell with oxidized fatty acid ligands of University of Debrecen the receptor (Nagy et al., 1998). The elucidation of...
متن کاملRspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages
Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R‑spondin 2 (Rspo2), a member of the cysteine‑rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R‑spondin members in macrophages. The present study wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 35 4 شماره
صفحات -
تاریخ انتشار 2015